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evaluated as testcrosses in 2 years. Testcrosses were pheno-
typed for grain dry matter yield and content and genotyped 
with 56,110 single nucleotide polymorphism markers. Pre-
dictive abilities strongly depended on the relatedness of the 
doubled haploid lines from the estimation set with those on 
which prediction accuracy was assessed. For scenarios with 
strong population heterogeneity it was advantageous to 
perform predictions within a priori defined genetic groups 
until higher connectivity through related test units was 
achieved. Differences between group means had a strong 
effect on predictive abilities obtained with both cross-
validation and independent validation. Predictive abilities 
across subsequent cycles of selection and years were only 
slightly reduced compared to predictive abilities obtained 
with cross-validation within the same year. We conclude 
that the optimum data set for model training in genome-
enabled prediction should represent the full genetic and 
environmental spectrum of the respective breeding pro-
gram. Data heterogeneity can be reduced by experimen-
tal designs that maximize the connectivity between data 
sources by common or highly related test units.

Introduction

In hybrid breeding long-term genetic gain is ensured 
through recurrent selection. Each selection cycle comprises 
thousands of progenies derived from a large number of 
crosses and evaluated for their performance as testcrosses 
in multi-environment field trials. The best selection candi-
dates in one year may directly serve as recombination units 
for the next selection cycle or need to be re-evaluated in 
the following year. In crops with short generation inter-
vals such as maize, multiple cycles of recombination per 
year can be accomplished, leading to a constant output of 
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recombined genetic material and highly complex inter-
connected selection cycles staggered in time within each 
breeding population (Gordillo and Geiger 2008).

While in the past selection of superior genotypes was 
mainly based on their phenotypic performance, recent 
advances in molecular techniques, statistical genetics, and 
computational algorithms have put genome-enabled selec-
tion within reach for quantitatively inherited traits (Meu-
wissen et  al. 2001). In maize breeding, the accuracy of 
predicting phenotypes from DNA profiles (genomic predic-
tion, GP) has recently been investigated for breeding popu-
lations (Albrecht et  al. 2011; Crossa et  al. 2010), bi- and 
multiparental populations (Guo et al. 2012; Schulz-Streeck 
et al. 2012; Riedelsheimer et al. 2013), and diversity pan-
els (Rincent et  al. 2012; Riedelsheimer et  al. 2012). Esti-
mates of prediction accuracies obtained in these studies 
were encouraging with respect to the usefulness of GP in 
practical breeding programs and most of the studies have 
come to similar conclusions with respect to the factors 
determining prediction accuracy. The statistical method 
employed in GP should be chosen wisely depending on the 
trait under study (Wimmer et  al. 2013). For truly quanti-
tative traits, several statistical methods have been shown 
to perform well over a wide range of populations and 
experimental settings (Heslot et al. 2012; Pérez-Rodríguez 
et al. 2012; Lehermeier et al. 2013; Gianola 2013). Major 
determinants of prediction accuracy in most studies were 
the sample size and genetic constitution of the population 
used for model training. As pointed out by Windhausen 
et al. (2012) and Guo et al. (2014), predictive ability can be 
highly affected by population structure, when the calibra-
tion set comprises genetic groups with significantly differ-
ent mean performance. The average relatedness of the indi-
viduals employed in model training with those individuals 
on which prediction accuracy is assessed also has a strong 
effect (Habier et  al. 2010). With cross-validation (CV), 
Albrecht et  al. (2011) observed a significant decrease in 
genomic predictive ability for maize testcross performance 
when doubled haploid (DH) lines belonging to the same 
biparental family were mutually excluded from the estima-
tion and test sets.

The body of data available for training of a genome-
based prediction model in a hybrid breeding scheme is 
complex. In plant breeding populations, genetic diversity 
is maintained by frequent introgressions of genetically 
diverse, unrelated germplasm which can lead to exten-
sive genetic substructure in the selection cycle in which 
the material is introduced. The choice of tester may vary 
over selection cycles and may be attuned to the maturity of 
the selection candidates such that an early maturing tester 
is crossed to a group of late maturing selection candidates 
and vice versa. Model training can be performed with data 
collected in more than one year to minimize the effect of 

genotype × year interactions. However, by combining data 
from several selection cycles the average relatedness of the 
calibration set with the selection candidates is decreased 
and it is difficult to assess how prediction accuracies will 
be affected.

Thus, when implementing GP in commercial plant 
breeding programs the choice of data included in model 
training is one of the main challenges. Experimental stud-
ies based on diversity panels and large bi- or multiparental 
populations give first insights into the efficiency of GP, but 
they can only partly reflect the complex structure of a fast 
cycle hybrid breeding scheme. Therefore, the aim of our 
study was to assess predictive abilities of GP with genetic 
material derived from a commercial maize breeding pro-
gram. The data used here consist of two calibration sets 
for GP with 1,073 and 857 DH lines exhibiting different 
degrees of genetic substructure. All lines were evaluated as 
testcrosses for two quantitative traits, grain dry matter yield 
and grain dry matter content. DH lines were genotyped 
with a high-density marker array comprising 56,110 single 
nucleotide polymorphism markers (SNPs). Our objectives 
were to (1) assess the relative efficiency of GP over pedi-
gree-based prediction with different calibration sets using 
cross-validation accounting for genetic substructure, (2) 
compare predictive abilities across locations with predic-
tive abilities across years, and (3) evaluate the efficiency of 
prediction across genetic groups and testers.

Materials and methods

Plant material

The experimental data in this study consist of two sets of 
genetic material from the maize dent pool comprising 
1,073 and 857 DH lines. The two sets of material represent  
two selection cycles of the same maize breeding program 
and form two calibration sets for GP (Fig.  1). In calibra-
tion set 1 (CS1), the 1,073 DH lines were derived from 192 
crosses among 55 parents (43 inbred lines and 12 single-
crosses). In calibration set 2 (CS2), the 857 DH lines were 
obtained from 294 crosses among 75 parents (55 inbred 
lines and 20 single-crosses). The two calibration sets were 
connected by 25 parents (Supplementary Figure S1a). The 
number of DH lines derived from each cross was highly 
variable, ranging from 1 to 63 DH lines with an average 
of 6 DH lines in CS1 and 1 to 26 DH lines and an average 
of 3 DH lines in CS2. The number of progeny per parent 
ranged from 1 to 203 with an average of 39 DH lines in 
CS1 and from 1 to 130 with an average of 23 DH lines in 
CS2. Pedigree records included a minimum of three gener-
ations with 479 ancestors representing germplasm of differ-
ent breeding populations (Supplementary Figure S2). DH 
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lines were assigned to one of three genetic groups depend-
ing on whether they were derived from crosses between 
parents originating from the current dent gene pool (G1) or 
from crosses of lines from the current gene pool with dent 
germplasm from two different unrelated sources (G2, G3). 
Supplementary Figures S1 and S3 show the connection 
between genetic groups G1, G2, and G3 based on paren-
tal lines used in the crosses from which DH lines were 
derived. All materials described in this study are proprie-
tary to KWS SAAT AG.

Genotypic data analysis

Both calibration sets were genotyped with 56,110 SNP 
markers using the Illumina® MaizeSNP50 BeadChip 
(Ganal et  al. 2011). Only high-quality SNPs with a Gen-
Train score ≥0.7 and a call frequency ≥0.9 were used for 
further analysis. We discarded SNPs with a minor allele 
frequency (MAF) <0.01 and redundant SNPs, resulting in 
15,732 and 16,846 useful, polymorphic SNPs for CS1 and 
CS2, respectively. For the joint analysis of both calibration 
sets (N =  1,930 DH lines), the same SNP selection steps 
were performed resulting in 17,734 polymorphic SNPs. 
Marker genotypes were consistently coded as the number 
of copies of the minor allele, i.e., 0 or 2. Missing values 
were reconstructed using the function ‘codeGeno’ from the 
R package ‘synbreed’ with the option ‘beagleAfterFamily’ 
(Wimmer et al. 2012).

Field experiments and phenotypic analysis

Phenotypic performance of the DH lines of CS1 was evalu-
ated from testcrosses with a single-cross (T1) or double-
cross (T2) tester in 2010. DH lines of CS2 were evaluated 
as testcrosses with either of two single-cross testers (T1 or 

T3) in 2011. The three testers were derived from six paren-
tal inbred lines (A, B, C, D, E, F) from the opposite heter-
otic flint pool, with T1 being a cross of inbred lines A × B, 
T2 of lines C.D × B.E, and T3 of lines B × F. In CS1, four 
group/tester combinations were evaluated and in CS2 five 
combinations. Each DH line was crossed to only one of the 
three testers and each of the 192 crosses in CS1 and 294 
crosses in CS2 was assigned to only one of the nine possi-
ble group/tester combinations of the two calibration sets. A 
summary of the distribution of DH lines across groups and 
testers in each calibration set is given in Fig. 1.

Field trials were conducted in six German locations 
in 2010 and 2011, with four locations represented in both 
years. In 2010, entries were distributed across 16 trials. 
Each trial was conducted in four of the six locations result-
ing in 6–16 trials per location. In 2011, entries were distrib-
uted across 12 trials and each trial was conducted in three or 
four of the six locations, resulting in 4–12 trials per location. 
Each trial was laid out in a 10 × 10 lattice design with two 
replications containing 94 entries and six hybrid checks in 
2010 and 95 entries and five hybrid checks in 2011. Entries 
comprised the 1,930 genotyped DH lines and 714 additional 
DH lines for which no genotypic data were available.

Measured phenotypic traits were grain dry matter yield 
(GDY, dt/ha) and grain dry matter content (GDC, %). 
Outliers were identified and removed based on maximum 
deviant residuals according to Grubbs (1950). Adjusted 
entry means across locations within years were calculated 
in a two-stage approach according to Piepho et al. (2012). 
Variance components were estimated separately for geno-
typed and non-genotyped entries and their corresponding 
genotype × location interactions (Piepho et al. 2006) using 
restricted maximum likelihood with the software ASReml 
3.0 (Gilmour et al. 2009). Significance of variance compo-
nents was tested according to Stram and Lee (1994). Trait 
heritabilities were approximated based on genotyped DH 
lines for both traits and both years according to Holland 
et al. (2003).

Prediction models

To predict testcross performance of DH lines, we used two 
mixed models differing in the definition of the variance–
covariance structure for random testcross effects. For the 
first model, pedigree-based estimates of kinship coeffi-
cients were used to model the variance–covariance struc-
ture of testcross effects. The model is denoted as PBLUP 
and is described as follows:

where y is a N  ×  1 vector of adjusted means for N DH 
lines obtained from the phenotypic analysis; β is a c ×  1 
vector of fixed effects with c = 4 (CS1) and c = 5 (CS2) 

y = Xβ + Zt + e,

Fig. 1   Data structure and number of DH lines (N) in calibration sets 
CS1 and CS2 allocated to genetic groups G1, G2, and G3 and crossed 
to testers T1, T2, and T3
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factor levels for group/tester combinations (Fig.  1). The 
fixed effect was included to correct for genetic substructure 
within calibration sets. Random testcross effects were mod-
eled with the N ×  1 vector t ∼ N

(
0, Kσ 2

t

)
, where K is a 

N × N matrix of expected kinship coefficients derived from 
pedigree information estimated with the ‘kin’ function of 
the R package ‘synbreed’ (Wimmer et al. 2012) and σ 2

t  is 
the testcross variance pertaining to the PBLUP model. The 
design matrices X and Z assign the adjusted means to the 
fixed and random effects, respectively. The N × 1 residual 
vector e is assumed to be independent and normally distrib-
uted with e ∼ N(0, Iσ 2

eP
), where I is an identity matrix and 

σ 2
eP

 is the residual variance.
In the second prediction model, the variance–covariance 

structure of testcross effects was derived from genome-
wide marker data. The model is denoted as GBLUP and 
can be written as

where the vectors y, β and the design matrices X and Z are 
defined as in the PBLUP model and e ∼ N(0, Iσ 2

eG
), with 

σ 2
eG

 being the residual variance pertaining to the GBLUP 
model. The random testcross effects u are assumed to be 
normally distributed with u ∼ N(0, Uσ 2

u ), where U is a 
N × N matrix of realized kinship coefficients based on the 
marker data and σu

2 is the testcross variance pertaining to 
the GBLUP model. We calculated U according to Astle 
and Balding (2009) as identical by descent (IBD) estimates 
between pairs of individuals from genome-wide SNP data. 
The elements of U were estimated as

where wim and wjm are genotype scores of individuals i and 
j at marker locus m, pm is the MAF of marker m in the pop-
ulation under study, and M the number of marker loci.

Analysis of genetic substructure

In CS2, we analyzed the relatedness of DH lines within and 
between the four group/tester combinations G1/T1, G1/T3, 
G3/T1, and G3/T3 based on pedigree information. Given 
the a priori definition of substructure in a data set, the  
maximum kinship between a DH line i and all other lines 
from the same group/tester combination (kmax,i within) 
should be significantly higher than the maximum kinship 
between the DH line and all lines from the other group/
tester combinations (kmax,i between) (Saatchi et  al. 2011). 
Mean kinship coefficients (k̄) were calculated as average 
of pairwise kinship coefficients between DH lines from the 
same or different group/tester combinations.

y = Xβ + Zu + e,

Uij =
1

2M

M∑

m=1

(wim − 2pm)(wjm − 2pm)

2pm(1 − pm)
,

Cross‑validation

We used ten times replicated fivefold cross-validation 
(CV) as described in Albrecht et al. (2011) to assess the 
predictive abilities of PBLUP and GBLUP. Model param-
eters were estimated in estimation sets (ES) sampled 
according to procedures described below (CV1, CV2, 
and CV3). Predictive abilities were estimated as Pear-
son’s correlation coefficient rTS between the predicted 
and the observed testcross values of DH lines in test sets 
(TS).

In CV1, we employed random genotypic sampling 
of ES and TS for assessing the predictive abilities within 
calibration sets, within genetic groups, or within group/
tester combinations (Supplementary Figure S4a). The 
predictive ability for each TS was calculated based 
on vectors β̂, t̂ and û estimated from the correspond-
ing ES as rTS = r(yTS − XTSβ̂, ZTSt̂) for PBLUP and 
rTS = r(yTS − XTSβ̂, ZTSû) for GBLUP. Here, the vector 
yTS is a NTS × 1 vector of observed phenotypes in the TS 
and XTS and ZTS are NTS × c and NTS × N design matrices 
for fixed and random effects, respectively.

In CV2, predictive abilities were assessed across 
genetic groups in CS1 and across group/tester combina-
tions in CS2 conditional on a given TS (Supplementary 
Figure S4b). Here, the same TS as sampled for CV1 
were used. However, the ES were sampled from DH 
lines not belonging to the same genetic group or group/
tester combination as the TS or from all remaining DH 
lines belonging to the same calibration set (ESAll). For 
CS1, sampling conditional on a TS from G3 (NTS = 49) 
is illustrated in Supplementary Figure S5. Here, ESAll 
comprised the remaining 1024 DH lines from CS1, while 
ESG1G2 comprised only DH lines from the groups G1 and 
G2 (NES  =  827). When different group/tester combina-
tions occurred in the ES and TS, a correction for the fixed 
group/tester effect was not possible and predictive abili-
ties were calculated based on the unadjusted observed 
testcross performance yTS.

In CV3, the predictive ability of GBLUP across loca-
tions was assessed to analyze the influence of geno-
type × location interactions. For this procedure, only the 
subset of DH lines belonging to genetic group G1 in CS1 
(N =  682) was used. The data set was divided into five 
genotypic subsets each evaluated in the same four loca-
tions resulting in 20 disconnected subsets (Supplemen-
tary Figure S6). The ES comprised adjusted means from 
three locations and four genotypic subsets. Following 
Utz et al. (2000), three different TS were defined for each 
ES taking genotypic sampling (TSg), sampling of loca-
tions (TSloc) and both factors simultaneously (TSg×loc) 
into account.
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Validation across years

To investigate predictive abilities of GBLUP across years, 
data from both calibration sets were analyzed jointly 
(N  =  1,930) with a realized kinship matrix U calculated 
from M =  17,734 SNPs. The vector of fixed effects β in 
the joint model included c = 9 factor levels for each year/
group/tester combination. To predict testcross performance 
of DH lines from CS2, phenotypic observations from CS2 
were masked and predicted from data in CS1 and vice 
versa. Predictive abilities were measured as the correlation 
of predicted testcross values and observed testcross perfor-
mance across all DH lines in each calibration set and for 
DH lines within each group/tester combination separately. 
Differences across group/tester subsets were visualized 
with elliptic contours. The shape of each ellipse represents 
the 95 % confidence region of a bivariate normal distribu-
tion with mean and variance–covariance structure corre-
sponding to the mean and variance–covariance matrix of 
the predicted and observed testcross values within each 
group/tester combination.

Results

Phenotypic analysis

Testcross means for GDY and GDC differed significantly 
(p  <  0.01) between calibration sets, genetic groups, and 
group/tester combinations (Supplementary Table S1). In 
2010 (CS1), adjusted means for GDY ranged from 95.13 
to 148.20 dt/ha with a mean of 126.71 dt/ha. Climatic con-
ditions in 2011 were more favorable for maize production 
than in 2010 and GDY and GDC in CS2 were significantly 
(p  <  0.01) higher than in CS1 with a range of 108.10 to 
165.30  dt/ha and a mean of 144.31 dt/ha for GDY and a 
mean of 71.81 % for GDC. Mean GDY in G2 was substan-
tially reduced compared to G1 and G3 in both calibration 
sets. In CS2, significant differences (p < 0.01) in the vari-
ance and mean performance were observed between DH 
lines crossed to testers T1 and T3 for both traits (Supple-
mentary Figure S7).

In both calibration sets, genotypic and genotype × loca-
tion interaction variances were highly significant (p < 0.01) 
for both traits. Trait heritabilities on a progeny mean 

basis were ĥ2
GDY = 0.72 and ĥ2

GDC = 0.94 for CS1 and 

ĥ2
GDY = 0.71 and ĥ2

GDC = 0.95 for CS2.

Prediction within calibration sets and group/tester 
combinations

In both calibration sets, GBLUP outperformed PBLUP for 
both traits (Table 1). Consistent with expectation, absolute 

predictive abilities of GBLUP and the relative advantage 
of genome-enabled over pedigree-based prediction were 
reduced in CS2 compared to CS1 due to the DH lines 
being derived from a larger number of crosses derived from 
more parents and the lower average number of progeny 
per cross. In CS1, mean GBLUP predictive abilities were 
rTS = 0.59 for GDY in the complete set of lines and ranged 
between rTS = 0.40 for the smallest group G2 (NG2 = 145) 
and rTS = 0.65 for G1, the group with the largest sample 
size (NG1 = 682). Although the sample size of the ES was 
increased when the complete set of lines was analyzed 
(N =  1,073), there was no gain in predictive ability over 
lines from G1 for GDY. For GDC, however, the mean 
predictive ability was rTS = 0.87 for CS1 and higher than 
within individual groups. Although G2 and G3 were small 
(NG2 = 145 and NG3 = 246), mean predictive abilities for 
GDC were still high (rTS = 0.77 and 0.78, respectively).

For CS2, the mean GBLUP predictive ability for GDY 
was rTS  =  0.49 for the complete set of lines and ranged 
between rTS = 0.30 for G3/T3 (NG3/T3 = 122) to rTS = 0.59 
for G1/T3 (NG1/T3 =  393). Predictive abilities within G1/
T3 were higher than in the complete CS2 (N = 857). For 
GDC, the mean predictive ability was rTS =  0.86 in CS2 
and decreased when predictions were performed within 
individual group/tester combinations.

Prediction across group/tester combinations

Results for predictions across genetic groups and group/
tester combinations obtained with GBLUP and CV2 are 
illustrated in Figs. 2 and 3 and Supplementary Figure S8.

In CS1, tester T1 was crossed mainly to DH lines from 
group G1 whereas T2 was crossed only to lines of groups 
G2 and G3 (Fig. 1). Thus, the effects of genetic substruc-
ture and tester cannot be separated within CS1. For GDY, 
predictive abilities in group G1 slightly decreased when 
the ES was augmented with DH lines from G2 and G3 
even though the sample size of the ES was almost dou-
bled (Fig.  2a). The same effect was observed for group 
G3 even though the increase in sample size of the ES was 
more dramatic than for group G1. Only for G2, there was 
an increase in predictive ability from rTS  =  0.40 to 0.44 
when the ES included also lines from groups G1 and G3. 
In this case, the increase in sample size was almost tenfold, 
with NES  =  1,044 for ESAll compared to NES  =  116 for 
ESG2. To account for the effect of sample size, we predicted 
testcross values of DH lines from G2 with 116 randomly 
sampled DH lines from the 1,044 DH lines of ESAll. This 
led to a substantial decrease of average predictive abili-
ties from rTS  =  0.44 to 0.23 (results not shown). For all 
groups in CS1, predictive abilities decreased substantially 
(rTS = 0.26–0.30) when the ES consisted only of DH lines 
from genetic groups that were not included in the TS. It is 
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noteworthy, however, that the decrease in predictive abili-
ties in CS1 might have been slightly overestimated because 
of the different testers used for production of testcrosses in 
groups G1, G2, and G3.

For GDC, augmenting the ES with lines from the other 
genetic groups led to higher predictive abilities for all 
groups. Predictions of genetic values of DH lines from 
groups G2 and G3 even performed well (rTS = 0.69 and 
0.74, respectively) when the ES comprised only DH lines 
from the other genetic groups. For the TS of G1, pre-
dictive abilities decreased markedly (rTS  =  0.57) when 
only the groups G2 and G3 were included in the ES 
(NES = 391).

For CS2, it was possible to evaluate the effects of 
genetic groups and testers separately, because DH lines 
from both groups were crossed to both testers. When the 

sample size of the ES was kept constant at NES = 98, pre-
dictive abilities obtained with CV for both traits were sig-
nificantly (p < 0.01) correlated with the parameter of relat-
edness k̄max calculated for DH lines within and between 
group/tester combinations (Fig.  3). Correlations between 
the mean pairwise kinship parameter k̄ and predictive abil-
ity were only significant (p < 0.01) for GDY.

When the sample size of the ES was not fixed, predic-
tions with genetic group G1 crossed to tester T3 (ESG1/T3) 
outperformed predictions within G3/T3 probably due to 
the much larger sample size of the ESG1/T3 (Supplemen-
tary Figure S8d). It was surprising though that the predic-
tion across groups (e.g., G1/T3 predicted with G3/T3) per-
formed better than the prediction across testers (e.g., G1/T3 
predicted with G1/T1) in all cases (Supplementary Figure 
S8).

Fig. 2   Predictive ability within and across genetic groups obtained 
with GBLUP and CV1 and CV2, respectively. Specific estimation 
sets (ES) were sampled for test sets (TS) of genetic groups a G1, b 
G2, and c G3 in calibration set CS1. These specific ES comprised 
DH lines from the same group, all groups (ESAll), or different groups 

(ESG2G3, ESG1G3, ESG1G2). Boxplots show the range, median (bar) 
and mean (×) of 50 CV runs for grain dry matter yield (GDY) and 
grain dry matter content (GDC). Numbers above or below boxplots 
indicate average predictive abilities and size of the estimation sets, 
respectively
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Prediction across locations and years

Results of the prediction across locations obtained with 
CV3 within the subset of group G1 of CS1 are given in 
Table  2. When predicting GDY testcross performance in 
an independent location (TSloc), mean predictive abilities 
were markedly reduced compared to predicting independ-
ent genotypes (TSg) except for location 1. Reducing the 
number of locations in the ES from four to three decreased 
the predictive ability across genotypes depending on how 
much the estimated heritability in the ES was reduced. Pre-
dictive abilities for GDC were not affected as strongly by 
the reduced number of locations in the ES as were those for 
GDY. Moreover, prediction across locations generally per-
formed well for GDC with a minimum predictive ability of 
rTS = 0.78 for location 1.

For GDY, Fig.  4 shows correlations between the 
observed testcross performance of DH lines in one year and 
their genome-based predicted values derived from model 
training with the entire calibration set of the other year. 
When calculated across group/tester combinations, predic-
tive abilities were higher in CS1 (rCS1 = 0.58) than in CS2 
(rCS2  =  0.38) and ranged between 0.30 and 0.44 within 
group/tester combinations except for DH lines from group 
G2 that could not be predicted accurately (rTS  =  0.28 in 
CS1 and −0.15 in CS2, latter not shown). For GDC, pre-
dictive abilities across years ranged between 0.50 and 0.74 
within group/tester combinations (Supplementary Figure 
S9). Predictions across years for both traits were in a simi-
lar range as predictions obtained by CV3 when sampling 
independent genotypes (Table 2, TSg×loc).

Discussion

When implementing new technologies in commercial 
breeding programs it is crucial to optimize the allocation 
of resources between new and established breeding proce-
dures. However, successful optimization of breeding sce-
narios requires a realistic framework of assumptions based 
on population and trait-specific parameters derived from 
experimental data. In this study, we provide estimates of 
prediction accuracies of GP specific to hybrid maize breed-
ing populations accounting for the effects of genetic heter-
ogeneity of the breeding population and genotype × envi-
ronment interactions.

Optimizing populations for model training

The two calibration sets employed here represent two 
successive cycles of selection of an advanced cycle maize 
breeding program. In both calibration sets, the DH lines 
assigned to genetic group G1 form the core set of germ-
plasm representing the breeding population. However, 
in a breeding scheme based on doubled haploid technol-
ogy the genetic variance of the breeding population gets 

Fig. 3   Mean predictive ability (r̄TS) of GBLUP for traits GDY and 
GDC obtained with CV1 and CV2 for the prediction within and 
across group/tester combinations (G1/T1, G1/T3, G3/T1, and G3/T3) 
in calibration set CS2 plotted against mean (k̄) and maximum kinship 
(k̄max) within and across group/tester combinations. The sample size 
of the estimation sets was fixed to NES = 98 for each of the 16 pos-
sible combinations. The correlations (r) between the predictive ability 
and mean and maximum kinship are given in the legend

Table 2   Heritability of the 
estimation set (h2

ES) and 
predictive ability obtained for 
three different test sets (TSg, 
TSloc, and TSg×loc) of CV3 for 
grain dry matter yield (GDY) 
and grain dry matter content 
(GDC) for four possible 
combinations of estimation and 
test sets of the subset G1 in 
calibration set CS1

Trait Location in TS h2
ES Predictive ability ± standard deviation

TSg TSloc TSg×loc

GDY 1 0.64 0.581 ± 0.008 0.620 ± 0.001 0.534 ± 0.008

2 0.64 0.618 ± 0.007 0.586 ± 0.001 0.477 ± 0.008

3 0.69 0.667 ± 0.008 0.427 ± 0.001 0.326 ± 0.010

4 0.71 0.641 ± 0.008 0.448 ± 0.001 0.362 ± 0.009

GDC 1 0.93 0.840 ± 0.005 0.782 ± 0.000 0.681 ± 0.005

2 0.90 0.833 ± 0.006 0.865 ± 0.000 0.754 ± 0.006

3 0.91 0.838 ± 0.006 0.860 ± 0.000 0.748 ± 0.005

4 0.91 0.819 ± 0.005 0.853 ± 0.000 0.770 ± 0.007
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depleted rapidly (Gordillo and Geiger 2008). To main-
tain sufficient genetic variance and thus secure long-term 
selection gain the genetic diversity of the breeding popu-
lation must be broadened by introgression of unrelated 
genetic material. In GP, Hayes et  al. (2009) argued that 
predictions should be more persistent over generations 
when multiple groups are included in the reference popu-
lation. Furthermore, Rincent et  al. (2012) recommended 
including genetic material derived from a diverse set of 
parents for model training to maintain high genetic varia-
tion within the estimation set. On the other hand, Habier 
et  al. (2010) showed that for complex traits like milk 
yield and somatic cell score in cattle, prediction accuracy 
in GP was highly dependent on the number of closely 
related individuals in the estimation and the test set. 
Thus, a fundamental question in GP concerns how the 
accuracy of genome-enabled prediction is affected when 
progeny derived from crosses with unrelated material are 
used for model training.

When fixing the sample size of the ES in CV, there was 
a close association between the pedigree-based kinship of 
the DH lines assigned to the ES and TS (k̄max) and the 
predictive ability of GBLUP for GDY and GDC (Fig.  3). 
However, when new genetic material is integrated into an 
existing breeding population, there is generally a strong 
imbalance in the number of lines derived from adapted and 
new genetic material and inferences on the association of 
the degree of relatedness and predictive ability are not as 
straightforward.

In both calibration sets, G1 represented the largest of the 
three genetic groups with the highest performance level. 
Even though the sample size of the estimation set was 
substantially increased by adding progeny from crosses 
with unrelated material, predictive abilities for GDY were 
reduced for G1 in CS1 representing the core set of lines. 
Only when the sample size of the ES was small, as was the 
case for G2 in CS1, predictive abilities slightly improved 
by adding progenies from crosses with unrelated mate-
rial. Our results corroborate the findings of Riedelsheimer 
et al. (2013) for multiparental crosses of maize that predic-
tion accuracy may not improve or may even decrease when 
genetic material from an unrelated family is included in the 
estimation set. Thus, when the genetic diversity of a breed-
ing population is expanded by introducing new unrelated 
genetic material, it may be advisable to perform predictions 
for GDY separately within a priori defined genetic groups, 
in particular if the level of connectivity between groups is 
low. We conclude that (1) the optimum data set for model 
training in GP should encompass the full genetic spectrum 
of a breeding population and that (2) data heterogeneity 
should be minimized by experimental designs that maxi-
mize the connectivity between data sources through com-
mon and/or highly related test units.

Cross‑validation and validation

In most plant breeding studies, predictive abilities obtained 
with GP under different experimental scenarios and 

Fig. 4   Observed testcross performance in calibration sets a CS2 and 
b CS1 plotted against predicted testcross values derived with GBLUP 
from calibration set a CS1 and b CS2 for grain dry matter yield visu-
alized as elliptical contours representing 95  % confidence intervals 
of the respective bivariate normal distributions for four group/tester 

combinations of CS1 and CS2, respectively. The respective groups 
are indicated by the symbol in the center of the ellipse and different 
types of lines. Correlations (r) are given for each calibration set and 
within group/tester combinations
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statistical methods have been assessed by resampling meth-
ods such as cross-validation. However, predictive abilities 
derived from CV are known to be optimistically biased if 
subgroups exist that differ significantly in their mean per-
formance and this difference is not accounted for in the 
statistical model (Guo et  al. 2014). This effect was also 
demonstrated by Windhausen et al. (2012) for prediction of 
the performance of 255 maize hybrids derived from eight 
breeding populations. Predictive abilities obtained with 
random sampling in CV were biased by the differences in 
population means and could not be confirmed by independ-
ent validation. In this study, we also observed this phenom-
enon. When the population substructure introduced by the 
three genetic groups was not accounted for by fitting fixed 
group effects in the prediction model, predictive abilities 
in CV increased from rTS = 0.59 to 0.73 for GDY in CS1 
(data not shown), because testcross effects captured the 
variation across groups in addition to within groups.

Thus far, only few studies have compared predictive 
abilities obtained from CV with those realized in independ-
ent validation. Hofheinz et al. (2012) pointed out that CV 
with genetic material from the same selection cycle can 
overestimate the potential of GP for traits with medium her-
itability compared to validation with recombined genetic 
material evaluated in a different year. Similar results were 
also reported by Utz et al. (2000) for marker-assisted selec-
tion of complex traits where CV also overestimated predic-
tive abilities relative to independent validation. With herit-
abilities in CS1 and CS2 being almost identical, we could 
compare predictive abilities from cross-validation in CS1 
with validation in CS2 (Fig. 4a and Supplementary Figure 
S9a) and cross-validation in CS2 with validation in CS1 
(Fig. 4b and Supplementary Figure S9b). As expected, we 
observed a decrease in predictive ability for validation com-
pared to CV for both traits. However, estimates of the cor-
relation between the predicted and observed genetic values 
can be inflated or deflated in validation just as much as in 
CV. While the overall correlation of observed and predicted 
testcross values of DH lines in CS1 was overestimated for 
GDY (rCS1 = 0.58, Fig. 4b) due to group mean differences 
in the predicted and the observed values, it was substan-
tially underestimated for GDC in CS2 (rCS2 =  0.51, Sup-
plementary Figure S9a) due to large differences in means 
between testers within groups for the observed but not for 
the predicted values.

We conclude that accounting for genetic heterogeneity 
in the estimation and the test sets is crucial for both CV 
and validation but it is a non-trivial task. Mean centering of 
input data or modeling of group means as fixed effects can 
only be performed when distinct groups are known a priori. 
However, when breeding cycles are highly interconnected, 
pedigree-based definition of genetic groups becomes 
difficult. Marker data can support the identification of 

substructure within the population employed in model 
training (Supplemental Figure S2, Guo et  al. 2014). But 
how to efficiently correct for the effect of (hidden) popu-
lation heterogeneity in genome-based prediction across 
selection cycles remains a problem that warrants further 
research.

Prediction across environments

In most breeding programs, the large majority of selection 
candidates are tested in one year and only candidates that 
perform exceedingly well are re-tested in subsequent years. 
To compensate for the lack of information on performance 
in multiple years selection candidates are grown in a suite 
of locations chosen to represent target environments and 
to optimally capture genotype × environment interactions. 
We evaluated if predictive abilities obtained in across year 
predictions can be anticipated with predictions across loca-
tions. Predictive abilities obtained with CV3 can account 
for genotypic and environmental sampling (TSg×loc), but 
not for the advance in selection cycle from CS1 to CS2. 
Nevertheless, predictions with CV3 in TSg×loc ranged from 
rTS = 0.33 to 0.53 for GDY (Table 2) and were quite simi-
lar to results from validation across years. The same was 
true for GDC and thus we conclude that the effect of across 
year prediction was captured quite well by CV3. To obtain 
a more complete picture on the effects of genotype × envi-
ronment interactions on predictive abilities and the use-
fulness of accounting for them in GP will require more 
than two calibration sets. For example, predictions across 
years might benefit if data sets tested in different years 
are connected by common lines, or if the effects of geno-
type × environment interactions are modeled as suggested 
by Burgueño et al. (2012).

Prediction across testers

When the phenotypic evaluation of DH lines is performed 
with an inbred or single-cross tester, the effects of gen-
eral and specific combining ability cannot be separated 
in GBLUP (Albrecht et  al. 2011). However, if heterotic 
groups were established a long time ago as in hybrid maize 
breeding, then the relative importance of specific relative 
to general combining ability is expected to be small (Reif 
et  al. 2007) and genetic correlations between DH lines 
crossed to different testers should be medium to high. In 
CS2, predictive abilities within and across groups were 
comparable for the two testers even though testcrosses with 
tester T1 and T3 differed significantly in their means and 
variances for both traits (Supplementary Table S1 and Fig-
ure S7). We could not estimate genetic correlations between 
testers because each DH line was only crossed to one of the 
two testers. If we assume a lower bound of rg = 0.60 for 
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the genetic correlation between two testers based on results 
from the literature (e.g., Melchinger et al. 1998), predictive 
abilities obtained within the same group but with a differ-
ent tester were disappointingly low in this study, especially 
because the two flint single-cross testers T1 and T3 shared 
a common parent. Even with non-random assignment of 
DH lines to the two testers it is not obvious why predic-
tive abilities for the within group/across tester comparison 
were consistently lower than those for the across group/
within tester comparison for both traits. This remained true 
even when the sample size of the ES was fixed at NES = 98 
(data not shown). For this data set, it cannot be determined 
whether the low predictive abilities across testers are due to 
the non-random assignment of DH lines to the tester sub-
sets or the effects of specific combining ability. Thus, in 
the context of GP the choice of tester and the magnitude 
of specific combining ability effects merit further attention.

Conclusions

The integration of genome-enabled prediction into com-
mercial plant breeding schemes has to face many chal-
lenges and is not as straightforward as reported for cat-
tle populations (Jonas and de Koning 2013). Our results 
show that realistic estimates for prediction accuracies can 
only be obtained by adequately accounting for the effects 
of genetic heterogeneity and genotype  ×  environment 
interactions. The magnitude of correlations between the 
predicted and observed testcross performance for grain 
yield and maturity in validation across years was encour-
aging and argues for implementing GP in commercial 
breeding programs considering that the correlations were 
calculated for subsequent cycles of selection, different 
years, and different testers. We conclude that the accu-
racy of GP may be increased by optimizing experimen-
tal designs so that groups distinguished by genetic sub-
structure, testers, or environmental effects are connected 
by common or highly related test units. Thus, to more 
effectively implement GP, it will be necessary to revisit 
the current breeding schemes with a view to re-allocating 
resources based on trait and population parameter esti-
mates obtained from large experimental studies such as 
the one presented here.
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